Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 138, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38229403

RESUMEN

Microalgae species encounter oxidative stress in their natural environments, prompting the development of species-specific adaptation mechanisms. Understanding these mechanisms can offer valuable insights for biotechnological applications in microalgal metabolic manipulation. In this study, we investigated the response of Tetraselmis chuii, an industrially important microalga, to H2O2-induced oxidative stress. Exposure to 0.5-mM H2O2 resulted in reduced cell viability, and higher concentrations led to a drastic decline. After 1 h of exposure to H2O2, photosynthetic capacity (Qy) was negatively impacted, and this reduction intensified after 6 h of continuous stress. Global multi-omics analysis revealed that T. chuii rapidly responded to H2O2-induced oxidative stress within the first hour, causing significant changes in both transcriptomic and metabolomic profiles. Among the cellular functions negatively affected were carbon and energy flow, with photosynthesis-related PSBQ having a 2.4-fold downregulation, pyruvate kinase decreased by 1.5-fold, and urea content reduced by threefold. Prolonged exposure to H2O2 incurred a high energy cost, leading to unsuccessful attempts to enhance carbon metabolism, as depicted, for example, by the upregulation of photosystems-related PETC and PETJ by more than twofold. These findings indicate that T. chuii quickly responds to oxidative stress, but extended exposure can have detrimental effects on its cellular functions. KEY POINTS: • 0.5-mM H2O2-induced oxidative stress strongly affects T. chuii • Distinct short- and long-term adaptation mechanisms are induced • Major metabolic adaptations occur within the first hour of exposure.


Asunto(s)
Peróxido de Hidrógeno , Fotosíntesis , Estrés Oxidativo , Carbono
2.
Microorganisms ; 11(9)2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37764117

RESUMEN

Bacteria employ a wide range of molecular mechanisms to confer resistance to bacteriophages, and these mechanisms are continuously being discovered and characterized. However, there are instances where certain bacterial species, despite lacking these known mechanisms, can still develop bacteriophage resistance through intricate metabolic adaptation strategies, potentially involving mutations in transcriptional regulators or phage receptors. Vibrio species have been particularly useful for studying the orchestrated metabolic responses of Gram-negative marine bacteria in various challenges. In a previous study, we demonstrated that Vibrio alginolyticus downregulates the expression of specific receptors and transporters in its membrane, which may enable the bacterium to evade infection by lytic bacteriophages. In our current study, our objective was to explore how the development of bacteriophage resistance in Vibrio species disrupts the quorum-sensing cascade, subsequently affecting bacterial physiology and metabolic capacity. Using a real-time quantitative PCR (rt-QPCR) platform, we examined the expression pattern of quorum-sensing genes, auto-inducer biosynthesis genes, and cell density regulatory proteins in phage-resistant strains. Our results revealed that bacteriophage-resistant bacteria downregulate the expression of quorum-sensing regulatory proteins, such as LuxM, LuxN, and LuxP. This downregulation attenuates the normal perception of quorum-sensing peptides and subsequently diminishes the expression of cell density regulatory proteins, including LuxU, aphA, and LuxR. These findings align with the diverse phenotypic traits observed in the phage-resistant strains, such as altered biofilm formation, reduced planktonic growth, and reduced virulence. Moreover, the transcriptional depletion of aphA, the master regulator associated with low cell density, was linked to the downregulation of genes related to virulence. This phenomenon appears to be phage-specific, suggesting a finely tuned metabolic adaptation driven by phage-host interaction. These findings contribute to our understanding of the role of Vibrio species in microbial marine ecology and highlight the complex interplay between phage resistance, quorum sensing, and bacterial physiology.

3.
Int J Mol Sci ; 24(9)2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37175906

RESUMEN

Vibrio harveyi, a significant opportunistic marine pathogen, has been a challenge to the aquaculture industry, leading to severe economical and production losses. Phage therapy has been an auspicious approach in controlling such bacterial infections in the era of antimicrobial resistance. In this study, we isolated and fully characterized a novel strain-specific phage, vB_VhaS_MAG7, which infects V. harveyi MM46, and tested its efficacy as a therapeutic agent in challenged gilthead seabream larvae. vB_VhaS_MAG7 is a tailed bacteriophage with a double-stranded DNA of 49,315 bp. No genes linked with virulence or antibiotic resistance were harbored in the genome. The phage had a remarkably large burst size of 1393 PFU cell-1 and showed strong lytic ability in in vitro assays. When applied in phage therapy trials in challenged gilthead seabream larvae, vB_VhaS_MAG7 was capable of improving the survival of the larvae up to 20%. Due to its distinct features and safety, vB_VhaS_MAG7 is considered a suitable candidate for applied phage therapy.


Asunto(s)
Infecciones Bacterianas , Bacteriófagos , Terapia de Fagos , Vibrio , Animales , Bacteriófagos/genética , Vibrio/genética , Infecciones Bacterianas/genética , Peces/genética , Genoma Viral
4.
Appl Microbiol Biotechnol ; 107(11): 3801-3815, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37074382

RESUMEN

The biology and biotechnology of bacteriophages have been extensively studied in recent years to explore new and environmentally friendly methods of controlling phytopathogenic bacteria. Pseudomonas syringae pv. tomato (Pst) is responsible for bacterial speck disease in tomato plants, leading to decreased yield. Disease management strategies rely on the use of copper-based pesticides. The biological control of Pst with the use of bacteriophages could be an alternative environmentally friendly approach to diminish the detrimental effects of Pst in tomato cultivations. The lytic efficacy of bacteriophages can be used in biocontrol-based disease management strategies. Here, we report the isolation and complete characterization of a bacteriophage, named Medea1, which was also tested in planta against Pst, under greenhouse conditions. The application of Medea1 as a root drenching inoculum or foliar spraying reduced 2.5- and fourfold on average, respectively, Pst symptoms in tomato plants, compared to a control group. In addition, it was observed that defense-related genes PR1b and Pin2 were upregulated in the phage-treated plants. Our research explores a new genus of Pseudomonas phages and explores its biocontrol potential against Pst, by utilizing its lytic nature and ability to trigger the immune response of plants. KEY POINTS: • Medea1 is a newly reported bacteriophage against Pseudomonas syringae pv. tomato having genomic similarities with the phiPSA1 bacteriophage • Two application strategies were reported, one by root drenching the plants with a phage-based solution and one by foliar spraying, showing up to 60- and 6-fold reduction of Pst population and disease severity in some cases, respectively, compared to control • Bacteriophage Medea1 induced the expression of the plant defense-related genes Pin2 and PR1b.


Asunto(s)
Bacteriófagos , Solanum lycopersicum , Pseudomonas syringae , Bacteriófagos/genética , Enfermedades de las Plantas/prevención & control , Plantas
5.
Bioelectrochemistry ; 151: 108376, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36716515

RESUMEN

The potential of renewable energy application via direct electrode interaction for the production of bio-based chemicals is a promising technology. The utilization of extracellular energy in pure culture fermentations aims in intracellular redox balance regulation in order to improve fermentation efficiency. This work evaluates the impact of a bioelectrochemical system in succinic acid fermentation and the metabolic response of Actinobacillus succinogenes. The metabolic pathway regulation of A. succinogenes was evaluated via RNA expression of the key enzymes that participate in TCA cycle, pyruvate metabolism and oxidative phosphorylation. The genes that were significantly overexpressed in BES compared to non-BES were phosphoenolpyruvate carboxykinase (0.4-fold change), inorganic pyrophosphatase (2.3-fold change) and hydrogenase (2.2-fold change) and the genes that were significantly underexpressed were fumarase (-0.94-fold change), pyruvate kinase (-6.9-fold change), all subunits of fumarate reductase (-2.1 to -1.17-fold change), cytochromes I and II (-1.25 and -1.02-fold change, respectively) and two C4-carboxylic acid transporters.


Asunto(s)
Actinobacillus , Fermentación , Actinobacillus/genética , Actinobacillus/metabolismo , Redes y Vías Metabólicas , Electricidad
6.
Pathogens ; 11(8)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-36014969

RESUMEN

Vibrio alginolyticus is an important pathogen of marine animals and has been the target of phage therapy applications in marine aquaculture for many years. Here, we report the isolation and partial characterization of a novel species of the Siphoviridae family, the Vibrio phage Artemius. The novel phage was species-specific and could only infect strains of V. alginolyticus. It could efficiently reduce the growth of the host bacterium at various multiplicities of infection as assessed by an in vitro lysis assay. It had a genome length of 43,349 base pairs. The complete genome has double-stranded DNA with a G + C content of 43.61%. In total, 57 ORFs were identified, of which 19 were assigned a predicted function. A genomic analysis indicated that Vibrio phage Artemius is lytic and does not harbor genes encoding toxins and antibiotic resistance determinants.

8.
Arch Virol ; 167(2): 501-516, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35000006

RESUMEN

Tailed bacteriophages have been at the center of attention, not only for their ability to infect and kill pathogenic bacteria but also due to their peculiar and intriguing complex contractile tail structure. Tailed bacteriophages with contractile tails are known to have a Myoviridae morphotype and are members of the order Caudovirales. Large bacteriophages with a genome larger than 150 kbp have been studied for their ability to use multiple infection and lysis strategies to replicate more efficiently. On the other hand, smaller bacteriophages with fewer genes are represented in the GenBank database in greater numbers, and have several genes with unknown function. Isolation and molecular characterization of a newly reported bacteriophage named Athena1 revealed that it is a strongly lytic bacteriophage with a genome size of 39,826 bp. This prompted us to perform a comparative genomic analysis of Vibrio myoviruses with a genome size of no more than 50 kbp. The results revealed a pattern of genomic organization that includes sets of genes responsible for virion morphogenesis, replication/recombination of DNA, and lysis/lysogeny switching. By studying phylogenetic gene markers, we were able to draw conclusions about evolutionary events that shaped the genomic mosaicism of these phages, pinpointing the importance of a conserved organization of the genomic region encoding the baseplate protein for successful infection of Gram-negative bacteria. In addition, we propose the creation of new genera for dwarf Vibrio myoviruses. Comparative genomics of phages infecting aquatic bacteria could provide information that is useful for combating fish pathogens in aquaculture, using novel strategies.


Asunto(s)
Bacteriófagos , Vibrio , Animales , Bacteriófagos/genética , Genoma Viral , Genómica , Familia de Multigenes , Filogenia , Vibrio/genética
9.
Animals (Basel) ; 11(9)2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34573711

RESUMEN

The inclusion of feed additives and the implementation of various nutritional strategies are studied to modify the rumen microbiome and consequently its function. Nevertheless, rumen enzymatic activity and its intermediate products are not always matched with the microbiome structure. To further elucidate such differences a two-phase trial using twenty-two dairy goats was carried out. During the first phase, both groups (20HF n = 11; high forage and 20HG n = 11; high grain) were supplemented with 20 g Schizochytrium spp./goat/day. The 20HF group consumed a diet with a forage:concentrate (F:C) ratio of 60:40 and the 20HG-diet consisted of a F:C = 40:60. In the second phase, the supplementation level of Schizochytrium spp. was increased to 40 g/day/goat while the F:C ratio between the two groups were remained identical (40HF n = 11; high forage and 40HG n = 11; high grain). By utilizing a next-generation sequencing technology, we monitored that the high microalgae inclusion level and foremost in combination with a high grains diet increased the unmapped bacteria within the rumen. Bacteroidetes and Prevotella brevis were increased in the 40HG -fed goats as observed by using a qPCR platform. Additionally, methanogens and Methanomassiliicoccales were increased in high microalgae-fed goats, while Methanobrevibacter and Methanobacteriales were decreased. Fibrolytic bacteria were decreased in high microalgae-fed goats, while cellulolytic activity was increased. Ammonia was decreased in high grains-fed goats, while docosapentaenoic and docosahexaenoic acids showed a lower degradation rate in the rumen of high forage-fed goats. The alteration of the F:C ratio in goats supplemented with Schizochytrium spp. levels modified both ruminal microbiota and enzymatic activity. However, there was no significant consistency in the relations between them.

10.
Microorganisms ; 9(7)2021 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-34361963

RESUMEN

With the aim to produce functional dairy products enriched with polyunsaturated fatty acids (PUFA) by using feed supplements, radical changes could occur in the rumen microbiome. This work investigated the alterations of the rumen bacteriome of goats fed with PUFA-rich marine microalgae Schizochytrium spp. For the trial, twenty-four goats were divided into four homogenous clusters (six goats/treatment) according to their fat-corrected (4%) milk yield, body weight, and age; they were individually fed with alfalfa hay and a concentrate (F/C = 50/50). The concentrate of the control group (CON) contained no microalgae, while those of the treated groups were supplemented daily with 20 (ALG20), 40 (ALG40), and 60 g (ALG60) of Schizochytrium spp./goat. Rumen fluid samples were collected using a stomach tube during the 20th and 40th days of the experiment. The microbiome analysis using a 16S rRNA sequencing platform revealed that Firmicutes were decreased in microalgae-fed goats, while Bacteroidetes showed a tendency to increase in the ALG40 group due to the enhancement of Prevotellaceae. Cellulolytic bacteria, namely Treponema bryantii, Ruminococcus gauvreauii, R. albus, and R. flavefaciens, were decreased in the ALG40 group, resulting in an overall decrease of cellulase activity. In contrast, the amylolytic potential was significantly enhanced due to an upsurge in Ruminobacter amylophilus, Succinivibrio dextrinosolvens, and Fretibacterium fastidiosum populations. In conclusion, supplementing goats' diets with 20 g Schizochytrium spp. could be considered a sustainable and efficient nutritional strategy to modulate rumen microbiome towards the development of dairy products enriched with bioactive compounds, while higher levels induced substantial shifts in determinant microbes' populations.

11.
Funct Integr Genomics ; 21(3-4): 503-511, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34269961

RESUMEN

Cartilage acidic protein 1A (hCRTAC1-A) is an extracellular matrix protein (ECM) of human hard and soft tissue that is associated with matrix disorders. The central role of fibroblasts in tissue integrity and ECM health made primary human dermal fibroblasts (NHDF) the model for the present study, which aimed to provide new insight into the molecular function of hCRTAC1-A. Specifically, we explored the differential expression patterns of specific genes associated with the presence of hCRTAC1-A by RNA-seq and RT-qPCR analysis. Functional enrichment analysis demonstrated, for the very first time, that hCRTAC1-A is involved in extracellular matrix organization and development, through its regulatory effect on asporin, decorin, and complement activity, in cell proliferation, regeneration, wound healing, and collagen degradation. This work provides a better understanding of putative hCRTAC1-A actions in human fibroblasts and a fundamental insight into its function in tissue biology.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Dermis , Fibroblastos , Transcriptoma , Células Cultivadas , Dermis/citología , Fibroblastos/metabolismo , Humanos , RNA-Seq
12.
Viruses ; 13(4)2021 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-33920240

RESUMEN

Lytic bacteriophages have been well documented to play a pivotal role in microbial ecology due to their complex interactions with bacterial species, especially in aquatic habitats. Although the use of phages as antimicrobial agents, known as phage therapy, in the aquatic environment has been increasing, recent research has revealed drawbacks due to the development of phage-resistant strains among Gram-negative species. Acquired phage resistance in marine Vibrios has been proven to be a very complicated process utilizing biochemical, metabolic, and molecular adaptation strategies. The results of our multi-omics approach, incorporating transcriptome and metabolome analyses of Vibrio alginolyticus phage-resistant strains, corroborate this prospect. Our results provide insights into phage-tolerant strains diminishing the expression of phage receptors ompF, lamB, and btuB. The same pattern was observed for genes encoding natural nutrient channels, such as rbsA, ptsG, tryP, livH, lysE, and hisp, meaning that the cell needs to readjust its biochemistry to achieve phage resistance. The results showed reprogramming of bacterial metabolism by transcript regulations in key-metabolic pathways, such as the tricarboxylic acid cycle (TCA) and lysine biosynthesis, as well as the content of intracellular metabolites belonging to processes that could also significantly affect the cell physiology. Finally, SNP analysis in resistant strains revealed no evidence of amino acid alterations in the studied putative bacterial phage receptors, but several SNPs were detected in genes involved in transcriptional regulation. This phenomenon appears to be a phage-specific, fine-tuned metabolic engineering, imposed by the different phage genera the bacteria have interacted with, updating the role of lytic phages in microbial marine ecology.


Asunto(s)
Adaptación Fisiológica , Bacteriófagos/genética , Interacciones Microbiota-Huesped/genética , Vibrio alginolyticus/genética , Vibrio alginolyticus/metabolismo , Bacteriófagos/patogenicidad , Farmacorresistencia Bacteriana , Perfilación de la Expresión Génica , Genoma Viral , Genómica , Redes y Vías Metabólicas/genética , Metabolómica , Terapia de Fagos , Filogenia , Vibrio alginolyticus/virología
13.
Animals (Basel) ; 11(2)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578642

RESUMEN

Whole sesame seeds (WSS) are rich in both linoleic acid (LA) and lignans. However, their impact on the innate immunity of goats is not well studied. Twenty-four goats were divided into three homogeneous sub-groups; comprise one control (CON) and two treated (WWS5 and WWS10). In the treated groups, WSS were incorporated in the concentrates of the CON at 5 (WSS5) and 10% (WSS10) respectively, by partial substitution of both soybean meal and corn grain. The expression levels of MAPK1, IL6, TRIF, IFNG, TRAF3, and JUND genes in the neutrophils of WSS10 fed goats were reduced significantly compared with the CON. The same was found for the expression levels of IFNG and TRAF3 genes in the neutrophils of WSS5 fed goats. Both treated groups primarily affected the MYD88-independent pathway. The dietary supplementation of goats with WSS might be a good nutritional strategy to improve their innate immunity.

14.
J Biotechnol ; 325: 250-260, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33069778

RESUMEN

The fermentative production of biobased chemicals and polymers using crude lignocellulose hydrolysates is challenging due to the presence of various inhibitory compounds and multiple sugars. This study evaluates the metabolic response of Actinobacillus succinogenes for the production of succinic acid using spent sulphite liquor (SSL) as feedstock derived from industrial acidic sulphite pulping of Eucalyptus globulus hardwood. A transcriptomic approach led to significant insights on gene regulation of the major metabolic pathways (glycolysis, pentose phosphate pathway, TCA cycle, pyruvate metabolism and oxidative phosphorylation) in batch cultures carried out on SSL and compared with glucose and xylose. Significantly overexpressed genes in SSL compared to glucose and xylose were fructose biphosphate aldolase (> 1.18-fold change) in the catabolism, phosphoenolpyruvate carboxykinase (> 1.59-fold change) and malate dehydrogenase (> 1.49-fold change) in the TCA cycle, citrate lyase (> 1.7-fold change), dihydrolipoamide dehydrogenase (> 0.88-fold change), pyruvate dehydrogenase E2 (> 1.63-fold change) and pyruvate formate lyase (> 0.61-fold change), involved in acetyl-CoA pathways. Finally, C4 tricarboxylic transporters were overexpressed (DCU (> 1.61-fold change) and 0079 (> 4.19-fold change). SSL was responsible for the upregulation of genes involved in the TCA cycle and oxidative phosphorylation, while xylose showed similar results with SSL in the oxidative phosphorylation.


Asunto(s)
Actinobacillus , Ácido Succínico , Actinobacillus/genética , Fermentación , Glucosa , Residuos Industriales , Transcriptoma
15.
J Dairy Res ; 87(4): 448-455, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33185179

RESUMEN

Mammary tissue (MT) turnover is characterized by programed cell death and remodeling which might be affected by both feeding level and animal species. Thus, twenty-four dairy goats and the same number of sheep were assigned to three homogenous sub-groups per animal species and fed the same diet in quantities which met 70% (FL70), 100% (FL100) and 130% (FL130) of their daily energy and crude protein requirements. Individual MT samples were taken by biopsy from the animals on the 30th and 60th experimental day. The results showed, in the first sampling time, a significant reduction in the mRNA abundance for selected genes involved in programed cell death in both FL 70 fed goats (STAT3 and BECN1) and sheep (CASPASE8 and BECN1) compared with the respective FL100 groups. The FL130, in comparison with the FL100, caused a significant increase in transcripts accumulation of STAT3 gene in both sampling times and CASPASE8 gene in the second sampling time in goat MT, while the opposite happened for the mRNA expression of CASPASE8 and BECN1 genes in sheep MT, but only in the first sampling time. Moreover, a significant up regulation in the mRNA levels of MMP2 gene in MT of FL130 fed sheep was observed. The FL130, in comparison with the FL70, caused an enhancement in the mRNA expression levels of BECN1, CASPASE8, BAX and STAT3 genes in goat MT only. It was also shown that apoptosis and autophagy can be affected simultaneously by the feeding level. Overfeeding affects MT programed cell death and remodeling by a completely different way in goats than sheep. In conclusion, feeding level and animal species have strong effects on both MT programed cell death (apoptosis and autophagy) and remodeling but the molecular mechanisms need further investigation.


Asunto(s)
Apoptosis/fisiología , Dieta/veterinaria , Cabras/fisiología , Glándulas Mamarias Animales/fisiología , Estado Nutricional , Ovinos/fisiología , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Apoptosis/genética , Femenino , Regulación de la Expresión Génica/fisiología , Glándulas Mamarias Animales/citología , ARN Mensajero/genética , ARN Mensajero/metabolismo
16.
PLoS One ; 15(5): e0233192, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32407360

RESUMEN

Rumen protected amino acids inclusion in ewes' diets has been proposed to enhance their innate immunity. The objective of this work was to determine the impact of dietary supplementation with rumen-protected methionine or lysine, as well as with a combination of these amino acids in two different ratios, on the expression of selected key-genes (NLRs, MyD88, TRIF, MAPK-1, IRF-3, JunD, TRAF-3, IRF-5, IL-1α, IL-10, IKK-α, STAT-3 and HO-1). Thus, sixty Chios dairy ewes (Ovis aries) were assigned to one of the following five dietary treatments (12 animals/ treatment): A: basal diet consist of concentrates, wheat straw and alfalfa hay (control group); B: basal diet +6.0 g/head rumen-protected methionine; C: basal diet + 5.0 g/head rumen-protected lysine; D: basal diet +6.0 g/head rumen-protected methionine + 5.0 g/head rumen-protected lysine and E: basal diet +12.0 g/head rumen-protected methionine + 5.0 g/head rumen-protected lysine. The results revealed a significant downregulation of relative transcript level of the IL-1α gene in the neutrophils of C and in monocytes of D ewes compared with the control. Significantly lower mRNA transcript accumulation was also observed for the MyD88 gene in the neutrophils of ewes fed with lysine only (C). The mRNA relative expression levels of JunD gene were highly induced in the monocytes, while those of IL-10 and HO-1 genes were declined in the neutrophils of ewes fed with the C and D diets compared with the control. Lower transcript levels of STAT-3 gene were observed in the neutrophils of ewes fed with either C or with E diets in comparison with the control. In conclusion, our results suggest that the dietary supplementation of ewes with rumen-protected amino acids, down regulate the expression of some genes involved in the pro-inflammatory signalling.


Asunto(s)
Aminoácidos/metabolismo , Industria Lechera , Regulación de la Expresión Génica , Inmunidad Innata/genética , Rumen/metabolismo , Ovinos/genética , Animales , Dieta/veterinaria , Monocitos/metabolismo , Neutrófilos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
17.
J Exp Bot ; 71(10): 3110-3125, 2020 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-32016431

RESUMEN

Monosaccharide transporters (MSTs) represent key components of the carbon transport and partitioning mechanisms in plants, mediating the cell-to-cell and long-distance distribution of a wide variety of monosaccharides. In this study, we performed a thorough structural, molecular, and physiological characterization of the monosaccharide transporter gene family in the model legume Medicago truncatula. The complete set of MST family members was identified with a novel bioinformatic approach. Prolonged darkness was used as a test condition to identify the relevant transcriptomic and metabolic responses combining MST transcript profiling and metabolomic analysis. Our results suggest that MSTs play a pivotal role in the efficient partitioning and utilization of sugars, and possibly in the mechanisms of carbon remobilization in nodules upon photosynthate-limiting conditions, as nodules are forced to acquire a new role as a source of both C and N.


Asunto(s)
Medicago truncatula , Carbono/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Proteínas de Transporte de Membrana , Monosacáridos , Fijación del Nitrógeno , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Simbiosis
18.
Front Allergy ; 1: 617240, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-35386933

RESUMEN

The airway epithelium is the primary site where inhaled and resident microbiota interacts between themselves and the host, potentially playing an important role on allergic asthma development and pathophysiology. With the advent of culture independent molecular techniques and high throughput technologies, the complex composition and diversity of bacterial communities of the airways has been well-documented and the notion of the lungs' sterility definitively rejected. Recent studies indicate that the microbial composition of the asthmatic airways across the spectrum of disease severity, differ significantly compared with healthy individuals. In parallel, a growing body of evidence suggests that bacterial viruses (bacteriophages or simply phages), regulating bacterial populations, are present in almost every niche of the human body and can also interact directly with the eukaryotic cells. The triptych of airway epithelial cells, bacterial symbionts and resident phages should be considered as a functional and interdependent unit with direct implications on the respiratory and overall homeostasis. While the role of epithelial cells in asthma pathophysiology is well-established, the tripartite interactions between epithelial cells, bacteria and phages should be scrutinized, both to better understand asthma as a system disorder and to explore potential interventions.

19.
J Anim Physiol Anim Nutr (Berl) ; 102(6): 1437-1449, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30043476

RESUMEN

Amino acids might be a tool to transform animals from a pro- to an anti-inflammatory phenotype through the downregulation of several genes (TLR-4, NF-κB, TNFa, IL-1ß, IL-2, IL-6, IL-8, CCL-5 and CXCL-16) whose expression increases during inflammation. To examine this possibility, each of sixty Chios dairy sheep was assigned to one of the following five dietary treatments: A: basal diet (control group); B: basal diet +6.0 g/head rumen-protected methionine (MetaSmart™ ); C: basal diet +5.0 g/head rumen-protected lysine (LysiGEM™ ); D: basal diet +6.0 g/head MetaSmart™  + 5.0 g/head LysiGEM™ ; and E: basal diet +12.0 g/head MetaSmart™  + 5.0 g/head LysiGEM. The results showed a significant downregulation in the expression of the TLR-4 gene in both the macrophages and the neutrophils of ewes fed rumen-protected amino acids. Significantly lower mRNA transcript accumulation was also observed for the TNFa, IL-1ß and CXCL-16 genes in the macrophages and for the IL-1ß gene in the neutrophils of ewes supplemented with amino acids. The ewes that received dietary supplementation with rumen-protected lysine alone (C) had significantly lower CCL-5 transcript levels in their macrophages than the ewes fed the other supplemented diets. Diet D enhanced the mRNA expression of the IL-2 gene in ewe neutrophils. Negative correlations were found between: a. TLR-4, TNFa, IL-1ß and CXCL-16 gene expression in macrophages and the milk fat and total solids content; b. CCL-5 gene expression in neutrophils and the milk yield and FCM(6%) ; and c. CXCL-16 gene expression and the milk protein content. Moreover, positive correlations were found between the BHBA concentration and the expression of the TLR-4 and CXCL-16 genes in macrophages. In conclusion, the rumen-protected amino acids improved sheep metabolism (as indicated by reduced blood BHBA and urea concentrations), milk chemical composition and immune system function.


Asunto(s)
Aminoácidos/farmacología , Dieta/veterinaria , Suplementos Dietéticos , Regulación de la Expresión Génica/efectos de los fármacos , Ovinos/inmunología , Aminoácidos/química , Aminoácidos/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Femenino , Regulación de la Expresión Génica/inmunología
20.
Protein Pept Lett ; 24(7): 599-608, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28641560

RESUMEN

BACKGROUND: Haloalkane dehalogenases (EC 3.8.1.5, HLDs) are α/ß-hydrolases which catalyze the irreversible cleavage of carbon-halogen bonds of haloalkanes, producing an alcohol, a halide and a hydrogen ion. Haloalkanes are acutely toxic to animals and humans and their toxic effects are mainly observed in the liver, kidneys and central nervous system. OBJECTIVE: In the present work, the haloalkane dehalogenase from Rhizobium leguminosarum bv. trifolii (DrlA) was characterized. METHOD: Reverse transcription polymerase chain reaction analysis and enzyme activity assays revealed that the DrlA gene expression in R. leguminosarum bv. trifolii is induced by 1,2- dibromoethane (1,2-DBE) during the early exponential phase. The gene of the enzyme was isolated, cloned and expressed in E. coli Rosetta (DE3). RESULTS: Recombinant DrlA displays its high catalytic activity towards 1,2-DBE and the long-chain haloalkane 1-iodohexane. Limited activity was observed for other aliphatic and cyclic haloalkanes, indicating that the enzyme displays restricted substrate specificity, compared to other bacterial HLDs. Homology modelling and phylogenetic analysis suggested that the enzyme belongs to the HLD-II subfamily and shares the same overall fold and domain organization as other bacterial HLDs, however major variations were identified at the hydrophobic substrate-binding cavity, the cap domain and the entrance of the main tunnel that affect the size of the active site pocket and the substrate recognition mechanism. CONCLUSION: This work sheds new light on the environmental fate and toxicity of 1,2-DBE and provides new knowledge on the structure, function and diversity of HLDs for developing applications in toxicology.


Asunto(s)
Catálisis , Hidrolasas/metabolismo , Rhizobium leguminosarum/enzimología , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Restauración y Remediación Ambiental , Escherichia coli/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Hidrocarburos Bromados/química , Hidrocarburos Bromados/toxicidad , Hidrolasas/química , Hidrolasas/genética , Modelos Moleculares , Filogenia , Pliegue de Proteína , Rhizobium leguminosarum/química , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...